

MWP – Young Researcher Abstract 2023

Project title:	
Unlocking the unique, climatic, and physiological signal from hydrogen isotopes in trees	
Author: Charlotte Angove, Marco Lehmann, Matthias Saurer, Guido Wiesenberg, Giles Young & Katja Rinne-	
Garmston	
Affiliation: Natural Resources Institute Finland	E-mail: charlotte.angove@luke.fi
Abstract (approx. 200 words): Climate change threatens boreal forests, for example by increased	
wildfires and tree deaths. The water cycle in a boreal forest is pivotal for boreal forest response to climate	
change. We are helping to unlock a poorly understood chemical tracer that tells us about water cycling by	
trees, which is the hydrogen isotope signal. Just like a person might want an engineer to develop an effective	
engine for cars, forest stakeholders might want a research project like mine to improve understanding to	
better predict what might happen to their forests in response to climate change. We trace the hydrogen	
isotopes in water up taken and transformed by trees, because it leaves chemical fingerprints that tell us about	
tree response to climate change and past climate. So far, we have improved a model that predicts a chemical	
fingerprint left by water loss from leaves, for plants worldwide. Now, we are developing the hydrogen isotope	
signal as an indicator of water loss from boreal forests, and we continue to explore what more the hydrogen	
isotope signal can tell us about forest response to climate change. With more communication, we can more	
aptly predict, and increase stakeholder connectivity, to tree response to climate change.	
Key words: Water cycling, chemical fingerprints, water loss, climate change, hydrogen isotopes	