

MWP – Young Researcher Abstract 2024

Project title: Increasing processing efficiency of the biomass crop poplar	
Author: Nette De Ridder ^{a,b} , Lennart Hoengenaert ^{a,b} , Jan Van Doorsselaere ^c , John Ralph ^d , Ruben Vanholme ^{a,b} and Wout Boerjan ^{a,b}	
Affiliation:	E-mail:
a Ghent University, Department of Plant Biotechnology and	nette.deridder@psb.ugent.be
Bioinformatics, Ghent, Belgium.	
b VIB Center for Plant Systems Biology, Ghent, Belgium.	
c VIVES, Roeselare, Belgium.	
d Department of Biochemistry and U.S. Department of	
Energy's Great Lakes Bioenergy Research Center, University	
of Wisconsin, Madison, WI, USA.	

Abstract (approx. 200 words):

The depletion of fossil resources necessitates renewable and climate-neutral feedstocks for bio-based products. Woody-biomass holds immense potential for building a sustainable bio-based economy but enzymatic conversion of wood into fermentable sugars is limited by lignin's recalcitrance. To improve wood quality, scopoletin was incorporated into the lignin polymer of poplar (Populus tremula x P. alba) by expressing FERULOYL-COA 6'-HYDROXYLASE 1 (F6'H1) and COUMARIN SYNTHASE (COSY) in lignifying cells. This creates labile bonds in the lignin that cleave more easily under alkaline conditions, forming a new type of 'zip lignin'. Transgenic poplars produced scopoletin without growth defects under greenhouse conditions. Alkaline pretreated wood of scopoletin-modified poplars demonstrated an up to 30% increase in sugar release compared to wild type poplars. These promising results are currently being validated in a field trial, ensuring that the observed benefits are consistent and sustainable in a real-world setting. This approach has significant potential to improve woody biomass conversion efficiency while simultaneously reducing costs and the need of chemical-intensive pretreatment processes in industrial applications such as paper production. By addressing a major limitation in biomass conversion, our research contributes to the development of a more sustainable and economically viable bio-based economy.

Key words:

Poplar, lignin engineering, alternative lignin monomers, scopoletin, translational research, alkalinedegradation, field trial, bio-based economy